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Abstract 0 Optimization techniques represent analytical tools 
available to the researcher in his search for the best possible solution 
to a particular problem. Methodologies have been developed for 
structuring typical pharmaceutical development problems into a 
framework whereby sophisticated mathematical techniques can be 
employed to arrive at an optimal solution. Pharmaceutical prod- 
uct and process design problems were structured as constrained 
optimization problems and subsequently solved by the Lagrangian 
method of optimization. This optimization method was employed 
to generate optimal formulations in typical tablet design problems 
and to locate optimizing levels of processing variables in a typical 
encapsulation design problem. 
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Pharmaceutical product and process design problems 
are normally characterized by multiple objectives. In 
designing a product, for example, the pharmaceutical 
scientist must often meet prespecified control limits 
which define or influence such dosage form charac- 
teristics as the unit cost, physical stability, chemical 
stability, or physiological availability of the active 
ingredient. The parameters describing these dosage form 
characteristics represent response or dependent vari- 
ables, and any limits or conditions placed on these 
response variables represent objectives. The magnitude 
of the observed value for each response variable gen- 
erally depends upon levels of one or more of the con- 
trollable (independent) variables. Mathematically speak- 
ing, thejth response variable is measured as yj,  and the 
responses obtained are a function of levels of one or 
more of the controllable variables, XI, XZ, . . ., X.. 
Thus, 

yj  = & ( X i ) ,  j = 1,2,. . ., r;  i = 1,2,. . ., n (Eq. 1) 

wherefi is the relationship between the one or more Xi 
controllable variables and each response variable yj.  
The geometrical representation of yi as a function of 
possible combinations of levels of the controllable 
variables defines a response surface (Fig. 1). The task 
of the pharmaceutical scientist frequently involves 
locating levels of the one or more Xi  controllable vari- 
ables that meet limits or conditions placed on each yi 
response variable. 

The response variables of product and process design 
problems are often affected differently by particular 
combinations of the controllable variables due to inter- 
action effects (1-5). If the response variable effects are 
nonadditive, the response surface is highly complicated. 
Unless the program of experimentation is statistically 
well designed and an extensive series of experiments is 
conducted, accurate estimates of the response variable 

t y .  = response ’ var iab le  

f. = relationship b e t ~ e e n  ’ combination o f  the 
cnntroilable variables 
and the r e - p o n s c  .:sriable 

k 
X. 

Figure 1-Representative graph of Eq. I for two controllable vari- 
ables, XI and X2. 

from a fixed set of controllable variables are virtually 
impossible (6). 

Design problems are further complicated when objec- 
tives are competing. As a particular controllable variable 
is increased in most pharmaceutical design problems, 
one response variable tends to improve while another 
response variable is degraded. For example, compres- 
sional force or the concentration of granulating agent 
employed may produce competing effects on tablet 
friability and disintegration time or on tablet hardness 
and drug-release rate. Achievement of the best product 
or process design under conditions of competing objec- 
tives and interactive effects by guesswork or trial and 
error is time consuming, unreliable, costly, and often 
unsuccessful. Furthermore, the pharmaceutical re- 
searcher who employs such techniques may not recog- 
nize how close a particular solution lies to the optimal 
solution. 

One way of dealing with complex pharmaceutical 
design problems is to structure them as constrained 
optimization problems. Problems structured in this way 
can be solved by any one of a number of existing tech- 
niques; one of the more versatile techniques is the 
Lagrangian method. This study investigated the useful- 
ness of a systematic optimization approach in solving 
pharmaceutical product and process design problems. 

Constrained mathematical optimization methods 
would appear to be broadly applicable to many pharma- 
ceutical product design and process analysis problems. 
Data which are currently being generated by preformu- 
lation research programs during drug product design 
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should permit the use of optimization techniques in an 
increasing number of product design or process analysis 
programs. 

Optimization techniques have the capability in 
pharmaceutical research of: (a)  saving time and mini- 
mizing costs in achieving the desired product design; 
(b )  improving the reliability of the research effort to 
achieve the optimal or near optimal product or process 
design solution; and ( c )  improving quality and assuring 
quality of the final drug product as affected by product 
and/or process design. 

THEORY 

Optimization problems may be broadly classified as either un- 
constrained or constrained. Unconstrained optimization involves 
the maximization or minimization of a function in which no restric- 
tions or limits have been placed on the controllable variables or 
functions of the controllable variables. For example, optimization of 

y = f ( X , ) ,  i = I,&.. ., n 0%. 2) 

represents an unconstrained optimization problem and can be 
solved by classical calculus techniques (7). For a function of n con- 
trollable variables, the location of relative optima requires solving 
a set of n simultaneous equations. The n simultaneous equations 
result from partially differentiating Eq. 2 with respect to the n 
controllable variables. The global optimum is then established by 
evaluating f ( X J  at the relative optimum points and selecting the 
most extreme of all the solutions obtained. 

A constrained optimization problem (7) is one in which a function 
is optimized subject to restrictions or limits placed on the con- 
trollable variables. Mathematically, the problem is to optimize 

(Eq. 3) y = f ( X , ) ,  i = 1,2,. . ., n 

such that: 

g j (X , )  = a,, 

gj(Xi> 2 aj, 

j = 1,2,. . . , p  5 n 

j = p + 1 , .  . ., m 

(Eq. 4) 

(Eq. 5 )  

Equation 3 represents the function to be optimized and is generally 
referred to as the objective function. Equations 4 and 5 are referred 
to as equality and inequality constraints for the specified constants 
al. Only the greater than or equal to relationship is represented, 
since h(X,) 5 0 may be written as g ( X J  = - h(XJ 2 0. Thus, the 
constrained optimization problem involves locating levels of X i  
that produce an optimal response inf(Xi) such that the constraints 
of the problem are not violated. If the objective function and 
constraints are linear, the problem can be solved by linear pro- 
gramming techniques (8-10). If nonlinearities exist in the objective 
function and/or one or more of the constraints, the constrained 
optimization problem of Eqs. 3-5 becomes a nonlinear programming 
problem. Several techniques capable of dealing with nonlinear 
programming problems have been developed(l1-13). Sincesystemsof 
pharmaceutical interest are often characterized by the presence of 
many interactions, nonlinear models frequently result. 

The Lagrangian Method-Of the techniques available for solv- 
ing the constrained optimization problem in its general form (Eqs. 
3-9, the most versatile method appears to be the Lagrangian 
method (7, 14, 15). Appendix A contains two numerical examples 
illustrating this method of optimization. The Lagrangian method 
has many desirable properties because this method: (a) locates the 
optimum directly and does not search infeasible points; (b)  gen- 
erates only feasible solutions; (c)  efficiently handles inequality as 
well as equality constraints; and (6) deals with nonlinearities in the 
objective function and/or constraints. 

Inequality constraints are converted to equality constraints by 
incorporating a slack variable, q j ,  which must be nonnegative to 
assure that its value is positive in the Lagrange function (16). 
Thus, Eq. 5 may be written as follows: 

(Eq. 6) 

The slack variable, q j ,  in effect absorbs the slack created by the 

gj(XJ - q,* = a], j = p + 1,. . ., m 

original inequality relationship. For a less than or equal to con- 
straint, the minus sign in Eq. 6 is replaced with a plus sign. Once 
the inequality constraints have been converted to equality con- 
straints, the next step is to form the Lagrange function, F ,  which is 
equal to the objective function plus the products of the Lagrange 
multiplier, Xi, and the constraint (7). For the general constrained 
optimization problem (Eqs. 3-9 ,  the Lagrange function becomes 

m 

C X M X J  - qj2  - all (Eq. 7) 

As shown in Eq. 7, one Lagrange multiplier is introduced for each 
constraint, and one slack variable is introduced for each inequality 
constraint. 

If the task is to minimize the objective function, then the Lagrange 
function is minimized with respect to the controllable variables Xi 
and maximized with respect to the Lagrange multipliers Xj, giving 
a so-called minimax solution (17, 18). In maximizing the objective 
function, the resulting solution is a maximin solution relative to 
Xi and Xj, respectively. Either form of the resulting solution is a 
stationary point in which the tangent of the Lagrange function is 
zero with respect to each Xi and Xj. Therefore, the values of the 
controllable variables which jointly satisfy each partial derivative 
of the Lagrange function with respect to Xi ( i  = 1, 2, . . ., n), X j  
( j  = 1 ,  2, . . . , p ,  . . . , m), and q j  ( j  = p + 1, . . . , m), each set equal 
to zero, provides stationary points including a constrained extreme 
of the objective function. These satisfying values, Xi*, can be 
obtained by the simultaneous solution to the n + rn equations. 
Each set of Xi* values obtained is a root to this set of equations 
and denotes a stationary point. If a set of equations gives multiple 
roots, then each root may be substituted into the objective function 
to find the one that is the desired extreme. If the equations obtained 
from partially differentiating the Lagrange function result in a set 
of simultaneous nonlinear equations, then numerical methods must 
be used to locate the simultaneous solution point (14). 

The Lagrange multiplier has an interesting interpretation directly 
relating to optimization problems (19). The numerical value of X j  
represents a measure of the instantaneous rate of change of the 
objective function with a change of the constraint's limiting value. 
Thus, the value of Xj is useful in projecting the expected gain or loss 
in the objective function accompanying a change in constraint of 
one unit. 

The Lagrangian method of solving constrained optimization 
problems assumes that a mathematical relationship exists which 
relates the response variable to levels of the controllable variables. 
Theoretically, mathematical models can be derived from a knowl- 
edge of the natural laws governing the system. However, underlying 
mechanisms in pharmaceutical product and process design problems 
are often so complicated that the formulation of an analytical 
mathematical model is out of the question. If an analytical model is 
impossible to derive, then an empirical mathematical model may 
be developed by using multiple-regression techniques (4, 20). Thus, 
it is usually possible to fit a polynomial to the response surface 
which can be expected to give an adequate approximation of the 
response surface over the region of experimentation. The Lagrangian 
method has been applied to a constrained optimization problem 
involving polynomial models generated by multiple-regression 
techniques (21). 

3'P + 1 

EXPERIMENTAL 

A typical product design problem was studied in this investigation. 
It involved locating levels of the binder and disintegrant that 
optimized tablet physical properties and drug availability in a model 
tablet formulation. An optimization method was used to solve a 
constrained tablet design problem involving a restriction placed on 
the urinary elimination rate of the drug. A process design problem 
was also analyzed utilizing regression models describing powder 
encapsulation (4). 

Model Tablet Design, Preparation, and Evaluation-A model 
tablet system was employed to demonstrate the advocated design 
procedure. Tablets containing various concentrations of a disin- 
tegrant and binder were prepared. The effect of the binder and dis- 
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integrant concentration on tablet hardness, friability, volume, in 
uitro release rate, and urinary excretion rate of drug in human sub- 
jects was recorded. Phenylpropanolamine hydrochloride' was the 
drug chosen based on its relatively low dose, safety, quantitative 
urinary excretion reflecting drug availability, and ease of assay from 
the urine. The model tablet system employed: (a) represented 
commonly used ingredients in tablet formulations; (b)  produced 
tablets that did not split or fracture during the friability test; and 
(c) contained levels of binder and disintegrant that significantly 
affected tablet hardness, friability, volume, and in uitro release rate 
of the drug. The tablet formulas studied were all contained within 
the following limits: 

Phenylpropanolamine hydrochloride 50 mg. 
Dicalcium phosphate dihvdrateZ (I.S. 
Corn starch3 ~ 

Stearic acid USP4 
1-41 7i 
5-45 7i 

Tablet weight = 400 mg. 

To achieve reproducible friability and in uitro r50% release rate 
data, it was necessary to control the moisture content of the tablets. 
The starch, therefore, was dried for 4 hr. at 120", and all tablet 
ingredients were individually stored in a vacuum desiccator con- 
taining anhydrous calcium sulfate5 for 24 hr. prior to compression. 
Tablets were individually compressed, utilizing 0.95 cm. (3/8 in.) 
standard cut tooling, to a load of 3000 Ib. on a pneumatic press.6 
The load was maintained for 10 sec., and all tablets were stored in a 
vacuum desiccator for at least 24 hr. prior to use. Karl Fischer 
moisture determinations were conducted to ensure that the moisture 
content of the tablets remained below 1%. At least five replicate 
tablets, each based on a separate powder mixture of a particular 
formulation, were used to obtain a measure of tablet volume, 
hardness, friability, and in uitro t 5 0 %  release rate for all nine tablet 
formulations studied. 

Tablet hardness in kilograms was determined using a Pfizer 
hardness tester.? Since tablet moisture content affected tablet 
friability, a special friabilation apparatus was fabricated in which 
humidity control was possible. This apparatus consisted of a 1.5-oz. 
amber, dry square bottle whose bottom was covered with a 0.25-in. 
layer of Wood's metal (soft solder). A 0.08-cm. (l/tpin.) thick piece 
of Teflon was dried over the Wood's metal to provide a smooth 
standard surface for tablet contact. A silica gel bag: wrapped in 
muslin, was attached to the cap of the bottle. Attrition was provided 
to the tablet in the bottle by placing the entire unit in an Eberbach 
shaker unit9 oscillating at  275 + 3 c.p.m., with a stroke length of 3.8 
cm. (1.5 in.). Friability was measured as the percent weight loss of an 
individual tablet after 40 min. of shaking. The conditions selected 
for the friabilation test were found to give reproducible data and 
to distinguish real friability differences existing among the nine 
different tablet formulations. 

Tablet volume was computed from the cylindrical tablet volume 
and the spherical segment volume of the standard cup punches used. 
The volume of the spherical segment was calculated as (22) 

(Eq. 8) 

where r is the radius of the segment and h is its depth. Punch 
diameter [0.94 cm. (0.3720 in.)] and punch depth I0.10 cm. (0.0410 
in.)] were measured with calipers. The volume of each spherical 
segment was calculated to be V = 0.037 cm.3 (0.0023 in.3). The 
crown thickness of the tablets was measured using an Ames 
micrometer. lo 

The in uitro release rate tests were conducted in a 250-ml., three- 
necked, round-bottom flask, utilizing 200 ml. of distilled water as 
the solvent, at 37 & 1". Agitation was provided by a model 12 
Stedi-Speed adjustable stirrer' equipped with a two-bladed, 3.18-cm. 
( I  .25-in.) diameter stainless steel impeller, which was operated at 130 

V = 1/6nh(3r2 + h2) 

1 Sigma Chemical Co., St. Louis, Mo. 
2 Monsanto Chemical Co., St. Louis, MO 63166 
3 A. E. Staley Mfg. Co., Decatur, IL 62525 
4 Ruger Chemical Co., Irvington-on-Hudson, N. Y. 
6 Drierite, W. A. Hammond Drierite Co., Xenia, OH 45385 
6 Fred S. Carver. Inc.. Summit. N. J. 
7 Chas. Pfizer &'Co.,'Inc., Brooklyn? NY 10017 

W. R. Grace Chemical & Co., Baltmore, MD 21203 

Table I-Tablet Formulations Used in the Optimization Study 

Mg. of Ingredient per Tablet- - 
Phenyl- Dical- 

Form- propanol- cium 
ulation amine Phosphate Stearic 

No. HCl .2HzO Starch Acid 
~~ 

1 50 326 4 (1%) 20 ( 5 % )  
2 50 246 84 (21 %I 20 
3 50 166 164(41%) 20 

84 100 
164 100 

4 
5 
6 

8 50 86 84 180 
9 50 6 164 180 

246 4 100 (25%) 
50 166 
50 50 86 

7 50 166 4 180 (45 7%) 

f 2 r.p.m. Thisagitation level providedsolvent circulation but did not 
disturb the particles formed by the disintegrating tablet at the 
bottom of the flask. Five-milliliter aliquots were removed at selected 
time intervals for analysis, with each aliquot being replaced by 
5 ml. of distilled water. The concentration of drug in the bulk 
solvent was corrected for drug lost from the previous samples. 
Each aliquot was filtered through a Millipore filter (0.65-p pore 
opening), and its absorbance was determined at 256.4 mp. Cumula- 
tive percent of drug released uersus time plots were prepared for 
each of the replicate tablets of each formulation. The time for 50% 
of the drug to be released ( t 5 0 % )  was determined graphically from 
each plot. 

The nine tablet formulations listed in Table I define a full 3 2  

factorial design. Levels of stearic acid and starch were equally 
spaced to permit a trend analysis of the data in the framework given 
by Davies (6). Replication provided an estimate of the experimental 
error involved, and experiments were randomized to prevent 
systematic biasing of the estimates of experimental effects. 

Urinary Excretion Rate-The urinary excretion rate of phenyl- 
propanolamine hydrochloride was determined for four different 
tablet formulations (Formulations 1, 3, 4, and 7 of Table I) and for 
a control solution of the drug. The control solution contained 47.66 
mg. of drug in 200 ml. of distilled water. Five healthy human male 
subjects were used. Each subject was separately administered all 
four of the dosage forms and the control solution of drug at time 
intervals of 7 X t '50% or longer, where tfso% represents a measure of 
the urinary elimination rate half-life in hours of the last formulation 
administered. The order of administration of the dosage forms and 
the order in which the individuals were tested were randomized. 
A modification of the assay of Heimlich er al. (23) was used for the 
drug urinalysis in which cyclohexane was employed as the extracting 
solvent. Three standards were run during each assay in which three 
known amounts of drug were added to a blank urine sample; the 
sample had been collected from each subject prior to administration 
of the dosage form. Semilog plots of cumulative percent drug re- 
maining in the body uersus time were made, the least-squares equa- 
tion for each line was solved, and the t '60% value was calculated. 

RESULTS AND DISCUSSION 

The effects of varying concentrations of stearic acid and starch, 
the controllable variables Xl and Xz,  on the tablet response variables 
of hardness (yl), in uitro r50% release rate (yz), friability (y3) ,  and 
volume (ya), are presented in Table 11. A two-factor analysis of 
variance (24) for homogeneity of variances disclosed that the in 
uitro t50% release rate (y,) and friability ( y 3 )  data appearing in Table 
I1 were not homoscedastic at the 99% confidence level. A transfor- 
mation was found which, when applied to the t50% and friability 
data, resulted in statistically equal variances a t  the nine different 
experimental conditions. An arithmetic plot was prepared showing 
the combination of standard deviation and mean value for each 
experimental condition of the in uitro release rate and of the fri- 
ability. In both cases the standard deviations were found to be 
proportional to the mean values, as indicated in the least-squares 
proportions of Eqs. 9 and 10, with correlations of fit exceeding 0.99: 

Su, = (0.7356 X lO-l)& (Eq. 9) 

Sy, = (0.8274)y3 (Eq. 10) 

Eberbach Corp., Ann Arbor, Mich. 
lo  B. C. Ames Co., Waltham, MA 46518 
11 Fisher Scientific Co., Chicago, Ill. 
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Table H-Effect of Stearic Acid and Starch Concentration on Certain Physical and Chemical Properties of the Tablets 

7 Percentage of Starch (X2)  
1 21 41 

Stearic -Response Variables- -- Response Variables- -- Response Variables- 
Acid, XI y,= Y 2 b  Y3E Y 4 d  x 102 yl Yz Y3 y4 x lo* y1 Yz Ya ~4 X lo2 

5 

Mean 
SD 

25 

Mean 
SD 

45 

Mean 
SD 

11.7 
12.0 
10.8 
10.2 
9.5 

10.8 
1.04 

15.0 
16.2 
16.4 
14.6 
15.5 
15.5 
0.77 

17.1 
17.7 
17.8 
17.8 
16.1 
17.3 
0.73 

52.5 
44.3 
47.9 
56.3 
51.0 
50.4 

118.0 
141.9 
123.5 
116.0 
123.0 
124.5 

300.0 
270.0 
324.0 
285.0 
281 .O 
292.0 

4.56 

10.25 

20.88 

4.49 2.36 5.4 15.0 
4.68 2.37 4.0 14.2 
4.43 2.37 4.4 15.7 
5.28 2.38 4.2 17.3 
4.33 2.37 5.8 15.8 
4.64 2.37 4.8 15.6 
0.378 0.005 0.79 1.15 
1.13 2.52 11.0 27.2 
0.99 2.53 9.5 25.2 
1.10 2.53 9.8 23.2 
1.21 2.53 10.3 28.3 
1.09 2.53 11.2 24.0 
1.10 2.53 10.4 25.6 
0.080 0.001 0.74 2.14 
0.08 2.73 13.5 36.2 
0.08 2.74 13.0 39.2 
0.10 2.73 13.1 43.1 
0.10 2.71 13.0 38.4 
0.08 2.73 12.8 41.7 
0.09 2.73 13.1 39.7 
0.011 0.008 0.46 2.73 

13.12 
13.71 
15.07 
15.88 
14.80 
14.52 
1.102 
1.55 
1.69 
1.48 
1.78 
1.64 
1.63 
0.115 
0.49 
0.45 
0.40 
0.38 
0.38 
0.42 
0.049 

2.53 1.5 5.1 
2.56 1.3 5.4 
2.56 1 . 3  5.9 
2.54 1 .0  6.0 
2.55 2.5 5.4 
2.55 1.5 5.6 
0.012 0.71 0.38 
2.67 6 .5  12.5 
2.66 5.4 11.8 
2.66 6 7 13.5 
2.66 6 . 4  12.0 
2.64 7.2 11.1 
2.66 6.4 12.2 
0.010 0.61 0.89 
2.86 9.8 19.6 
2.87 9.2 18.2 
2.85 9.8 20.7 
2.86 10.2 19.8 
2.86 11.0 21.7 
2.86 10.0 20.0 
0.005 0.66 1.32 

40.03 
47.20 
41.21 
47.92 
42.74 
41.82 
3.498 
4.74 
5.03 
5.17 
4.79 
5.75 
5.10 
0.406 
0.88 
0.95 
0.79 
0.84 
0.74 
0.84 
0.081 

2.72 
2.72 
2.69 
2.69 
2.70 
2.70 
0.010 
2.82 
2.85 
2.84 
2.82 
2.83 
2.83 
0.013 
3.00 
3.01 
2.99 
2.97 
2.97 
2.99 
0.016 

The yl is tablet hardness in Pfizer kilogram units. 6 The yz is in uitro release rate as measured by time in minutes for 50 Z of the drug to be in 
solution ( t 5 0 % ) .  c They3 is tablet friability as measured by percentage weight loss. d The yn is tablet volume in cubic inches. 

Brownlee (25) has shown that when S, = k7, the natural logarithmic 
transformation stabilizes the variances. This transformation was 
applied to the release rate and friability data; the results appear in 
Table 111. Three units were added to each transformation of 
friability datum to eliminate negative logarithmic values. The test 
for homogeneity of variances was then applied to the transformed 
data, and the existence of homoscedasticity could not be rejected 
at the 99 % confidence level. 

Regression Models-In stepwise regression, there are two basic 
versions: forward and backward (26). In this study, a backward 
stepwise regression analysis program1z was utilized to generate 
polynomial models relating the response variables to the controllable 
variables. The results of the regression analysis appear in Table IV. 
Although the multiple-correlation coefficients for the regression 
models were high (Table IV), the predictive power of each model 
required further evaluation. A valid means of extending the poly- 
nomial evaluation is to select experimental conditions or treatments 
not included in the original set of experimental conditions and to 
compute both the predicted response and its associated confidence 
interval. The result of a new experiment can then be compared with 
the prediction to determine if the new experimental result is con- 

39 1- / / I 
/ 

24 28 32 36 4 8 12 16 20 
’36 STEARIC ACID, XI 

Figure %Contour curves for tablet hardness (kilogram), illustrating 
levels of starch and stearic acid producing similar responses. 

tained within the confidence interval. Four new expenmental con- 
ditions were tested, and these formulations corresponded to the 
possible combinations of XI = 15 and 35% and XZ = 11 and 31 %. 
The predictions from the polynomial models were determined, and 
the 95 % confidence intervals about a single prediction were com- 
puted. Construction of confidence intervals associated with multiple 
regression can be found in Chew (20). Next these formulations were 
prepared and the responses in question experimentally determined. 
Results of these analyses are given in Table V. The experimental 
response values all fell within the 95 % confidence interval about a 
single prediction (Table V), with one exception. Thus, acceptance 
of the regression models in Table IV for predictive purposes in 
this study appears to be reasonable. 

Contour Graphs-Contour graphs illustrate combinations of the 
controllable variables producing the same response. For each pre- 
designated response of y j ,  X2 was solved at values of XI = 2, 4, 
6, . . . , 40. A computer program for this purpose for use on the 
IBM 7090 was written, and contours were set by interpolation 
from the XI and X2 values obtained in the program output. The 
generated contour graphs are presented in Figs. 2-5. Contour 
graphs not only give various combinations of the controllable 
variables which produce the same response, but they also provide 
other interesting and useful information. For example, from the 
contour graph for tablet hardness (Fig. 2), it can be seen that to 
maintain a tablet hardness of 6.0 kg., the ratio of starch to stearic 
acid must be about 2: 1; for a tablet hardness of 12.0 kg., the ratio 
needs to be about 1 :2. For the sake of illustration, assume that the 
requirements on the final tablet are that hardness be 8-10 kg. and 
in uitro r 6 o %  be 20-33 min The solution to this problem is readily 

Table II-Stabilizing Effect of the Logarithmic Transformation on 
In Vitro Release Rate (y2) and Friability (y3) 

% Stearic Starch --ln yZ0- -In y3b + 3.0- 
Acid(Xl) (X , )  Mean SD Mean SD 

5 1 3.901 0.1212 4.533 0.0789 
5 21 2.745 0.0729 6.674 0.0770 
5 41 1.714 0.0686 6.731 0.0821 

25 1 4.822 0.0796 3.100 0.0729 
25 21 3.239 0.0835 3.485 0.0729 
25 41 2.498 0.0776 4.626 0.0776 
45 1 5.675 0.0843 0.563 0.1218 
45 21 3.580 0.0690 2.127 0.1129 
45 41 2.994 0.0657 2.822 0.0967 

’*This regression analysis program was developed for use on the 
IBM 7090 by M. Dale Fimple of the Sandia Corp. 
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0 The in uirro t5m release C ~ Z )  is measured in minutes. bThe tablet 
friability (y3) is measured by percentage weight loss. 



Table IV-Results of Multiple Regression Analysese 
~~ ~~ ~ ~ 

Coefficients Regression Coefficient Value- 
and Trend Tablet Friability, Table Volume, 

Components Trend Component Name Tablet Hardness, yl In Vitro f50. / . ,  In yzb In y3 + 3.0b y4 x loz 

Bto y-Intercept 0.96089 X 10' 
B ~ I  Xi Linear in XI 0.31689 X loo 
B*zXZ Linear in Xz -0.33759 x 100 
B+3 Xi Quadratic in Xi -0,29915 X lo-' 
Bi,Xz2 Quadratic in Xz 0.21832 X lWa 
Bt5XiXz Linear X linear 

interaction 0.12626 X 1W2 
Bt s Xi Xz 

interaction 0.0 
Bi7 XI  Xz 

interaction 0.0  
Bd'l1Xz2 Quadratic X quadratic 

interaction 0.0 

Multiple correlation coefficient 0.9899 

Linear x quadratic 

Quadratic X linear 

0.37657 X 10' 
0.45581 X lo-' 

-0.55720 X lo-' 
0.0 
0.0 

-0.17935 X lo-' 

0.45949 X lo-' 

0.0 

-0.20698 X 

0.9982 

0.45164 X loe 
0.0 
0.72057 X 10-1 

-0.20254 X lo-' 
0.0  

-0.77965 X lo-' 

0,11249 X 

0.18878 X 

-0,30361 X lo-' 
0.9975 

0.23441 X 10' 
0.49647 X 
0.83571 X 
0.79259 X 
0.0 

-0.52103 X lW4 

0.11770 X 1W6 

0.0 

-0.19681 X lo-' 

0.9983 

a These analyses were performed on a polynomial of the form yi = Bra f Bid5 + BtzXz + BfSXI' + Bi4XZ2 + ++5XIX2 -I- B r a X i ~ z 2  f B ~ ~ X I . ~ X Z  f 
BisXiZXz2, where i = 1,2,3,  and 4. b Since thelogarithmic transformation was applied to in uitro tsO% and tablet friabdity data to stabilize the variances, 
trend and regression analyses were performed on the transformed data. 

available by superimposing the contour graphs for tablet hardness 
and in virro t50% on each other. Figure 6 illustrates the desired 
solution space (shaded portion of graph). Figure 6 points out the 
fact that there are many combinations of Xi and Xz  producing 
responses which meet these restrictions on tablet hardness and 
in uitro release rate. When this is the case, the final selection of levels 
of Xi and Xz can be based on some other criterion such as cost. The 
reader interested in the different types of contour graphs and their 
physical interpretation is referred to Box (27). 

Constrained Optimization-Since a reasonably rapid release rate 
of drug is generally an important objective in the design of solid 
dosage forms, optimization of this parameter was employed in 
studying the applicability of constrained optimization to a phar- 
maceutical product design problem. The problem was thus to locate 
levels of stearic acid ( X i )  and starch ( X2) that minimized the in vitro 
release rate, such that the average tablet volume did not exceed 
0.442 (3137.3 (0.0270 in.3) and the average friability value did not 
exceed 2.72 %. Expressed mathematically, this constrained optimiza- 
tion problem was to minimize 

Yz = J;(XI,X2) (Eq. 11) 

such that the following constraints were not violated: 

5 5 x, I 45 (Eqs. 12-13) 

1 5 Xz 5 41 (Eqs. 14-15) 

Table V-Verification of Generated Polynomial Models 

y4 = fp(Xi,Xz) I 0.0270 (Eq. 17) 
Equations 12-15 serve as constraints to keep the Xi and XZ values 
in the known experimental region. 

Figure 7 represents a graphical analysis of the constrained opti- 
mization problem defined by Eqs. 11-17. The shaded portion of 
the graph defines the region of feasible solutions where none of the 
constraints is violated. Any pair of Xi and X2 values within the 
shaded region meets the friability and volume constraints as well 
as the minimum starch percentage (Eqs. 14, 16, and 17), without 
consideration of such nonbinding constraints as those of Eqs. 12, 
13, and 15. The dashed contour lines of Fig. 7 represent in uitro 
tao% responses of 12, 20, and 33 min. Since this family of contour 
lines is decreasing in the direction of Point A, it is also evident 
that the minimum starch percentage of Eq. 14 will not be binding 
in a minimization problem. By eliminating obviously nonbinding 
inequality constraints, the optimization problem of Eqs. 11-17 
reduces to the following: minimize 

In yz = BZO + &X1 + BZXZ + BZ6XlXZ f 

such that 

BzsXiX2' + WsXizXz2 0%. 18) 

Bso + BazXz f B33Xi' + B3sXiXz + B3sXiXz2 4- 
B3,XiaX2 + B3sXi2Xz2 + qI2  - (In 2.72 + 3.0) = 0 (Eq. 19) 

B ~ o  + B41XI + B42x2 + B4aX1' + B4sXiXz + BasXiXz' + 
BeXi'X2' + 4 2 2  - (0.0270 X 1 0 2 )  = 0 (Eq. 20) 

New Experimental Conditions 
% Stearic % Starch, 
Acid, XI xz 

95% CI 
about the Experimental Predicted yi. 

Variable from Polynomal Single Prediction Results 

15.0 
15.0 
35.0 
35.0 
15.0 
15.0 
35.0 
35.0 
15.0 
15.0 
35.0 
35.0 
15.0 
15.0 
35.0 
35.0 

11.0 Hardness (yl), kg. 10.4 
31.0 5.9 
11.0 14.1 
31.0 10.1 
11.0 In uitro ?so% (YZ), 37.3 
31.0 nun. 12.3 
11.0 68.0 
31.0 19.9 

8.8 - 12.1 
4.3 - 7.5 

12.4 - 15.7 
8.4 - 11.7 

31.7 - 43.8 
10.4 - 14.4 
51.9 - 80.2 
16.9 - 23.4 

3.18 2.32 - 4.36 
7.04 5.13 - 9.66 31.0 z wt. loss 

11.0 0.55 0.40 - 0.78 
31.0 1.21 0.88 - 1.66 
11.0 Table volume (yJ,  0.0252 0.0249 - 0.0255 
31.0 in. 3 0.0268 0.0266 - 0.0271 
11.0 0.0269 0.0266 - 0.0272 
31.0 0.0283 0.0281 - 0.0286 

11.0 Tablet friability (y~), 

9.4 
4.4 

14.6 
9.6 

34.4 
12.9 
72.8 
19.9 
4.14 
6.64 
0.51 
1.21 
0.0254 
0.0272" 
0.0270 
0.0284 

This value fell slightly outside the 95 % confidence range for a single prediction. 
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33 Y 

4 8 12 16 20 24 28 32 38 
% STEARIC ACID, XI 

Figure 3-Contour curves for in vitro t 5 0 %  (minute), illustrating lecels 
of starch and stearic acid producing similar responses. 

In Eqs. 18-20, the regression models developed earlier (Table 
IV) have been substituted into Eqs. 11, 16, and 17. The slack 
variables q1 and q2 have been included in Eqs. 19 and 20 in order 
that these constraints may be written as equality constraints. The 
formulated Lagrange function is then 

F BZO + B21X1 + BZZXZ + B25XIxZ + B ~ ~ X I X Z '  + 
Bdi2Xz*  f h ( & o  + 8 3 2 x 2  + &3xi2 + Badixz + 
B36X1XZ2 f B37XlZX2 + B38XI2XZ2 + 41' - 4.000) + 

XZ(B~O f B ~ I X I  f B42X2 f B43XI2 f B45XIX2 + 
B46XiX2' + B,sXi2Xza + q z z  - 2.70) (Eq. 21) 

where XI and h2 are terms known as Lagrange multipliers. As can 
be seen from Eq. 21, one is introduced for each constraint. 

The original constrained optimization problem involving three 
equations has now been converted into an unconstrained minimax 
problem involving one equation. The minimax solution of Eq. 21 
defines values of XI and XZ which minimize the in vitro 150% value 
subject to the constraints on tablet friability and volume. When 
this Lagrange function is partially differentiated with respect to each 
variable, each differentiation is set equal to zero, and the set of six 
equations is solved simultaneously, the values of each variable are 

XI* = 22.5% XI = 0.50 41 = 0.0 
Xz* = 26.8% Xz = 2.90 9 2  = 0.0 

By substituting these values of Xl and Xz into Eq. 18, t*50% = 
17.9 min., which is the best release rate that can be achieved under 
the restrictions involved. Since q1 = qz = 0.0, both previously 
described constraints are binding as indicated by Fig. 7, where it 
is evident that the contour line for t*60% = 17.9 min. would pass 

33 

9 

3 

4 8 12 16 20 24 28 32 36 40 
% STEARIC ACID, XI 

Figure 5-Contour curves for tublet volume (cubic inch), illustrating 
levels of starch and stearic acidproducing similar responses. 

30 

through Point A, where the contour lines for y 3  = 2.72% and 
y 4  = 0.442 ~ 1 1 7 . ~  (0.0270 in.9 cross. 

Sensitivity Analysis-The solution to a constrained optimization 
problem may depend heavily upon the restricting values assigned 
to the secondary objectives or constraints. Consequently, minor 
modifications in these restricting values may result in a substantial 
improvement in the primary objective. Sensitivity analysis serves 
to identify the changes in the primary objective resulting from such 
modifications of the restricting values. Sensitivity analysis involves 
solving the constrained optimization problem for systematic changes 
of the restricting values assigned to the secondary objectives. 
Mathematically, the problem is to minimize In y t ,  such that 

In y 3  + 3.0 5 In ak + 3.0 (Eq. 22) 

5 5 XI 5 45, and 1 5 X2 5 41 (Eqs. 23-24) 

The restraining values of percent friability (ax) were allowed to  
assume the following values: 0.3, 0.4, 0.5, 0.6, 1.0, 2.0, 3.0, 4.0, 
5.0, 6.0, 7.0, and 8.0. These results are shown in Fig. 8, and they 
demonstrate that substantial improvements in t*50% can be obtained 
for values of a k  up to about 1-2x. Beyond 2%, the rate of decrease 
of t*50% is very low. Consequently, the scientist designing the drug 
product can evaluate the potential gains in the primary objective 
which accrue from modifications of restraining values on secondary 
objectives. An objective decision on whether or not restraining 
values on secondary objectives should be relaxed (or tightened), 
and by how much, is thus made possible. Also, the locus of XI* and 
Xz* points may be shown as a function of ak, as demonstrated by 
Fig. 9, so that any decision on the revision of a~ can immediately 
provide a revised solution in terms of the tablet formulation. 

Frequently, it is useful to consider the sensitivity of multiple 
constraints which requires a Lagrangian solution for each different 
combination of restricting values. For example, if the friability 
restriction was retained as f f k  and a tablet volume constraint of 

3L-- , ._ lL-  1 i,-JpluJ 
4 8 12 16 20 24 28 32 36 40 

% STEARIC ACID, XI 

Figure 4-Confour curves for tablet friability (percent weight loss), 
illustrating levels of starch and stearic acid producing similar re- 
sponses. 

6 

% STEARIC ACID, XI 

Figure 6-Feasible solution space defined by hypothetical restric- 
tions on tablet hardness and in vitro tso% release rate. Key: - - -, 
hardness contours (kilogram); and -, in vitro tho% contours (minute). 
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6 10 14 18 22 26 30 34 38 42 

% STEARIC ACID, XI 
Figure I-Graphical analysis of constrained Optimization problem 
deJined by Eqs. 26-32. Key: 0, in vitro t50% (minute); 0, volume 
(cubic in.); 0, hardness (ki/ogram); andA, percent starch. 

50 

6 4 0 ~ 0  

30 5 .  
.” 20 

.- 

10 

pk’ was added, then each f fk ,  pk‘ combination requires a new solution 
that provides t*50y,, XI*,  and Xz* values. The results for nine com- 
binations of a& and (3s’ for this example are shown in Table VI. 
An examination of the XI* and X2* values indicates that none of 
the experimental condition constraints was binding. Figure 10 
provides a graphic illustration of t*50% as a function of CY~ and 
&’. Figure 10 demonstrates that a sizable improvement in t*60% 
can be achieved by relaxing (Yk and flk’ values, but the rate of im- 
provement drops off sharply past the midvalue of o(k = 2.70 and 

Constrained Optimization and In Vivo Studies-Clinical trials 
performed on a new drug in its various dosage forms or dosage 
form modifications may result in information on the relationship 
between blood levels, level of therapeutic action, duration of action, 
toxicity properties, and the absorption rate or possibly the conse- 
quent elimination rate of the drug. Establishment of such relation- 
ships could lead to criteria being established on the absorption rate 
or consequent elimination rate in order that the best therapeutic 
response and/or duration of effect and minimal toxicity be achieved. 
The results of urinary elimination-rate studies performed on certain 
formulas used in this investigation are presented in Table VII. 
The time in hours for 509;: of the drug to be eliminated (t’60%) was 
used as a measure of the urinary elimination rate of the drug as 
modified by the availability from the respective formulation. The 
linear correlation coefficients for the semilog plots of drug retention 
versus time all exceeded 0.98, indicating that the excretion of phenyl- 
propanolamine hydrochloride followed an apparent first-order 
process. A comparison of the mean in uiiro (t50%) and in uivo ( t ’ S O % )  
data showed that the rank order of the formulations was the same 
for each criterion. Further analysis revealed that the logarithm of 
the mean in vivo t’50% data correlated very highly ( r  = 0.993) with 
the mean in uitro f 5 0 %  data on a linear scale. Figure 11 depicts this 
plot and illustrates the correlation. The confidence bands about the 
t’&o% values represent 95 confidence intervals. It would appear 
that prediction of the in viuo f’50% response from a knowledge of the 
in uitro t50% response can be made fairly accurately for the tablet 
system used in this study, employing the correlation curve appearing 
in Fig. 11. 

To illustrate the utility of the constrained optimization approach 
as applied to in uiuo data, a sample constrained optimization 
problem was formulated and solved using the Lagrangian method. 

@k’ = 0.0270. 

Figure &Optimum in 
vitro t50% release rate 
as a function of restric- 
tions on tablet fri- 

- 

- * - O  ability. 

I /  

I I I I I I I I L 
1 2 3 4 5 6 7 8  

MAXIMUM ACCEPTABLE FRIABILITY, % wt. loss 

Figure 9-Optimizing values of stearic acid and starch as a funciion 
of restrictions on tablet friability. Key: A ,  percent starch; and B, 
percent stearic acid. 

The following situation was assumed to exist in this illustrative 
example: 

1. The primary objective was to minimize tablet friability or its 
equivalent (In y3 + 3). 

2. Secondary objectives were to maintain a reproducible fill in 
the packaging container and to avoid noticeable differences in 
tablet size so that the tablet volume ( y4 )  is held within the interval 

3. Another secondary objective was to keep the in uivo elimination 
half-life below 6.5 hr. for the desired therapeutic effect of this drug. 

In constrained optimization form, the problem may be mathe- 
matically stated as: minimize 

0%. 25) 

0.0261-0.0269. 

(In Y J  + 3.0) = J;(X1,Xd 

such that 

2.61 5 y 4  X lo2 5 2.69, and (Eqs. 26-27) 

0.69937 + (0.1908 X lo-*) (elnut) 5 log 6.5 (Eq. 28) 

In Eq. 28, the left-hand side of the equation represents the least- 
squares estimate of the curve appearing in Fig. 11, and In yz  as a 
function of XI and Xz can be found in Table LV. 

Employing the Lagrangian method, the solution to the constrained 
optimization problem (Eqs. 25-28) was found to be as follows: 
XI* = 34.1W,. X2* = 13.39;:, and y3* = 0.64 % wt. loss. The 
volume constraint of Eq. 26 was nonbinding, and the other two 
constraints (Eqs. 27-28) were binding. To demonstrate further the 
validity of this approach to tablet design, a formulation was pre- 
pared using the optimal percentages of stearic acid and starch 
(34.1 and 13.39;:, respectively) and the empirical test results were 

Table VI-Optimizing Percentages of Stearic Acid and Starch and 
the Corresponding Optimal In Vitro Release Rate as a Function of 
Simultaneous Restraining Values on Tablet Friability and Volume 

Maximum Acceptable 
-Constraints- 
Fria- 
bility, 
% wt. Volume, 
loss (in.s) 

1.00 0.426(0.0260) 
0.442 (0.0270) 

Optimum 
In Vitro 

Optimizing Values Release 
of Controllable Variables Rate 
2 Stearic % Starch, (t*5!px), 
Acid, XI* Xz* min. 

27.9 7 . 9  71.6 
30.7 18.2 34.9 

0.459 in. 0280j 23.8 26.5 23.8 
2.70 0.4%(0.0260j 18.7 17.7 26.0 

0.442 (0.0270) 22.5 26.8 17.9 
0.459 (0.0280) 27.1 34.8 14.8 

7.40 0.426 (0.20601 10.9 23.9 15.4 
1 2 3 4 5 6 7 8  

MAXIMUM ACCEPTABLE FRIABILITY, 
% wt. loss 

0.442 (0.027oj 32.6 32.8 11.6 
0.459 (0.0280) 20.6 40.4 10.6 
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Table M-Results of Urinary Excretion Studies for Tablets 
Containing Various Concentrations of Starch and Stearic Acid 

Table VIII-Experimental Response Values for the Optimal 
Tablet Formulation of 34.1 % Stearic Acid and 13.3z Starch 

~~~~~~~~~ ~ ~ ~ 

Urinary 
Excretion 

Rate 
Sub- (t'sa%), Mean 

Formulation No." ject hr. (ttSO%), hr. SD 

Solution of Drug 1 
2 
3 
4 
5 

3 1 
2 
3 
4 
5 

1 1 
2 
3 
4 
5 

4 1 
2 
3 
4 
5 

7 1 
2 
3 
4 
5 

6.30 
4.09 
4.38 4.95 
5.09 
4.88 

5.07 
5.70 
5.94 
7.34 6.23 
6.07 
6.09 
9.13 

13.48 
16.54 18.00 
17.66 
19.65 

0.853 

0.874 

0.641 

1.723 

6.878 

5 See Table I. 

compared with the theoretical values predicted. These results appear 
in Table VIII, and the in uiuo urinary elimination rate curves appear 
in Fig. 12. The mean tablet volume of 0.442 c m 3  (0.0270 in.9 
and the mean t'so% excretion of 6.4 hr. were very close to the 
theoretical predictions of 0.0269 and 6.5, respectively. By optimizing 
the tablet friability, a cohesive tablet was formed, with an average 
friability weight loss of about 0.58$, which is sufficiently close to 
the theoretical prediction of 0.64 %. 

Pharmaceutical Process Optimization-Reier et al. (4) have re- 
cently quantified the weight and weight variation of filled capsules 
with controllable process variables. They found the significant set 

t.;o.,, min. 

4 

MAXIMLIM ACCEPTABLE 
FRIABILITY, o( 

Figure l&Optimum tSo% as a function of restrictions on tablet 
friability and volume. 

Tablet Urinary 
Friability, Excretion z wt. Rate 

Volume, cm.3 (in.3) loss (t'm%), hr. 

0.442 (0.0270) 
0.442 (0.0269) 
0.442 (0.0270) 
0.442 (0.0270) 

0.58 5.0 

0.444 (0.027ij 
Mean: 0.442 (0.0270) 0.58 6.4 

of controllable variables to be: (a) machine speed, r.p.m. (XI); (b )  
capsule size, (3177.3 (&); (c) specific volume, ml./g. (X3); (6) flow- 
ability, in.2 ( X4); and (e)  presence or absence of talc (&). Regression 
models relating these controllable variables with mean gross capsule 
weight (yl), capsule weight standard deviation (y2), and capsule 
weight coefficient of variation (y3) were given. These regression 
models can be employed to formulate an unconstrained optimization 
problem for determining levels of machine speed (X,) ,  specific 
volume ( X &  and flowability (X4), which minimize the capsule 
weight coefficient of variation (y3). Assuming that talc is present 
in the formulation, the model for y3 ,  using the data of Reier et al. 
(4), becomes 

y:  = 4.15 + 0.04Xi2 + 0.23X3' - 136x4 + 
0.45X4' - 0.15x1X3 - 0.1IXix4 (Eq. 29) 

Taking the first partial derivatives of Eq. 29 with respect to XI, Xa, 
and X4, setting these expressions equal to zero, and solving this 
set of three simultaneous linear equations produced the following: 
XI* = 13.3 r.p.m., X8* = 4.34 ml./g., and Xr* = 3.75 ins2 At this 
global minimum, y3* = 0.78%. However, the values for XI* and 
X3* far exceed values used by the authors in deriving Eq. 29 and 
may, therefore, not be valid. An interesting point is, however, that 
this information would suggest using a light, free-flowing powder 
and a high machine speed to minimize capsule weight variation. 
Since the maximum machine speed used by Reier et al. (4) was 8.7 
r.p.m., the optimization problem may be reformulated using this 
maximum machine speed as fixed, or : 

ya = 7.18 - 1.31Xa - 2.82X4 + 
0.23Xa2 4- 0.45Xa2 (Eq. 30) 

The solution to Eq. 30 is a global minimum at X3* = 2.85 ml./g. 
and X4* = 3.13 in.2, with the criterion of y3* = 0.90% at this 
minimum. Insofar as these regression models hold for various 
possible formulations, which appear to be reasonably general, the 
values XI* = 8.7, X3* = 2.85, and X4* = 3.13 for the control- 
lable variables minimize the capsule weight coefficient of variation. 
If y 3  is independent of capsule size, which appears valid for a t  
least moderate variations, then the solution to this optimization 
problem holds for various capsule sizes. 

However, it may not always be practical to utilize these optimum 
operating conditions. Often the bulk formulation, capsule size, and 
weight are specified in advance. As an example, assume the following 
information has been prespecified: (a) capsule size = No. 0, or 
Xz = 0.699; (b) capsule weight = 400 mg., or y1 = 400; (c) specific 
volume of powder = 2.80 ml./g., or X3 = 2.80; and (d) talc is 
present, or X S  = f l .  The objective is to locate levels of machine 
speed (XI> and flowability (X4) which minimize the capsule weight 

Figure 11-Correlation 
of in vivo and in 
vitro release rate data. 

50 100 150 200 250 300 
IN VURO t50%, min. 
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Figure 12-Urinary excretion data from five humans for the optimal 
tablet formulation of 34.1 % stearic acid and 13.3% starch. Key: 0, 
Subject I ;  A, Subject 2; 0, Subject 3; e, Subject 4; and A, Subject 
5. 

coefficient of variation. This represents a constrained optimization 
problem which may be formulated as follows: minimize 

y8 = 6.09 - 1.86X4 + O.04Xi2 - 0.45Xpz - 
0.42Xi - 0.11XiX~ (Eq. 31)  

such that 

548.49 - 32.27Xi - 11.20Xz + 1.92xiz = 400 (Eq. 32) 

The Lagrangian expression then becomes 

F = 6.09 - 1.86X4 + 0.04Xiz + O.45X4' - 
0.42Xi - 0.11Xix4 + X(148.49 - 32.27Xi - 

11.20Xz + 1.92X1') (Eq. 33) 

By partially differentiating Eq. 33 and solving this set of nonlinear 
equations, it was found that XI* = 5.63 r.p.m., X4* = 2.47 i n 2 ,  
and y3* = 1.62. Thus, for a 400-mg. No. 0 capsule, whose contents 
have a specific volume of 2.8 ml./g., the minimum coefficient of 
variation possible is 1.62, and this is achieved at a machine speed 
setting of 5.63 r.p.m. and a flowability value of 2.47 in.z 

SUMMARY 

The use of constrained optimization techniques, employing the 
Lagrangian method, has been successfully applied to complex 
pharmaceutical product and process design problems involving 
many competing objectives. Location of optimal solutions to 
pharmaceutical design problems by this analytical-mathematical 
approach has been demonstrated. In most situations the location 
of the theoretical optimal solution point can provide the starting 
reference for adjustments due to other practical considerations, 
thereby permitting more rapid and accurate solution of the design 
problem. The steps involved in solving a design problem via the 
constrained optimization approach may be summarized as follows: 

Identify important response variables y,, j = 1, 2, . . ., r,  the 
significant set of controllable variables Xi,  i = 1, 2, . . ., n, and 
measures on both classes of variables. 

Determine a mathematical relationship between each y j  as a 
function of Xi, either analytically or empirically. 

Select the response variable which is of greatest importance as 
the principal objective to be optimized and place control limits on 
the remaining response variables. 

Solve the resultant constrained optimization problem by one of 
the several existing techniques. 

In addition to finding optimal solutions to constrained pharma- 
ceutical problems, the application of sensitivity analysis studies to 
such problems was also illustrated. The rate of change of the optimal 
response in the principal objective to changes of restrictions on the 
competing or lesser important objectives was analyzed for a product 
design problem. 

The mathematical and statistical techniques described in this 
paper are suggested as an improvement over the trial-and-error 
approach widely employed today in pharmaceutical product and 
process design. Improved reliability of the research effort and a 
saving in time and money are the direct results of this sophisticated 
approach to pharmaceutical research problems. 

APPENDIX A 

Example 1-Locate the levels of XI and Xz which maximize 

Y = XIX2 (Eq. A-1) 

such that 

XI f xz = 4 (Eq. A-2) 

Since the constraint in Eq. A-2 is already in the form of an 
equality constraint, the Lagrangian function can be formed imme- 
diately: 

F = XtXz + X(Xi + Xz - 4) (Eq. A-3) 

Taking the first partial derivatives of the Lagrangian function 
(Eq. A-3) and setting the resulting equations equal to zero, 

dFlaX1 = x, + x = o 
aFlaX2 = xi + x = o 
aF/;iax 

(Eq. A-4) 

(Eq. A-5) 

(Eq. A-6) = xl + x, - 4 = o 
Solving these three equations simultaneously, XI* = 2, XZ* = 2, 
and X = -2.  Substituting these values of XI and XZ back into the 
objective function (Eq. A - l ) ,  it was found that y* = 4. Thus, the 
maximum response in y that can be obtained subject to the con- 
straint of XI + Xz = 4 is 4 units. This constrained optimization 
problem is represented graphically in Fig. A-1. Contour curves for 
objective function responses of 2, 4, and 6 units are shown. The 
dashed, straight line in Fig. A-1 represents the constraint (Eq. A-2), 
and Point A depicts the optimal solution point (Xi* = 2, Xz* = 2). 

y = XI2 + XzZ 

Example 2-Locate the levels of XI and Xz which minimize 

(Eq. A-7) 

such that 

XI + xz 2 4 (Eq. A-8) 

4 

3 

1 

I I 
1 2 3 4 5 6 

xz 
Figure A-1-Graphical solulion for constrained optimizarion problem 
of Eqs. A-I and A-2. Key: - - -, contour line for Xi + XZ = 4. 
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1 2 3 4 
xz 

Figure A-2-Graphical solution for constrained optimization probIem 
of Eqs. A-7 and A-8. Key: - - - -, contour line for XI + XZ = 4. 

The inequality constraint of Eq. A-8 must first be converted to 
an equality constraint by introducing a slack variable, q. Thus, Eq. 
A-8 may be written as 

Xl + xz - q= = 4 (Eq. A-9) 

and the Lagrangian function becomes 

F = Xiz + Xz2 + X(X1 + Xz - q 2  - 4) (Eq. A-10) 

Taking the first partial derivatives of Eq. A-10 and setting these 
expressions equal to zero, 

8FldXi = 2x1 + X = 0 (Eq. A-11) 

aFIax2 = 2x2 + X = 0 (Eq. A-12) 

aF/dX (Eq. A-13) 

aFIaq = -2Xq = 0 (Eq. A-14) 

= X I  + XQ - q2 - 4 = 0 

Solving these four equations simultaneously, Xl* = 2, Xz* = 2, 
q = 0, and X = -4. At this optimal solution point, y* = 8 units. 
This constrained optimization problem is represented graphically in 
Fig. A-2. Point A in Fig. A-2 illustrates the minimum response in 
y that can be achieved under the restriction that Xl + Xz 2. 4. 
At the simultaneous solution point for Eqs. A-11-A-14, it is noted 
that q = 0. Thus, at the optimal solution point, XI + Xz = 4. 
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